

Uniline System **ED-Series**

Uniline ED series / ~

Uniline ED series description

Fig. 59

Uniline is a family of ready-to-install linear actuators. They consist of internal Compact Rail roller sliders and steel-reinforced polyurethane belts in a rigid aluminum profile. Longitudinal seals enclose the system. This arrangement provides the best protection for the actuator from soiling and damage. In the ED series, a compensating bearing rail (U-rail) is mounted horizontally in the aluminum profile, and for increased moment support, two more compensating bearing rails (U-rail) are flanged to the profile externally. Versions with long (L) or double (D) sliders in one axis are possible.

The most important characteristics:

- Compact design
- Protected internal linear guides
- High traversing speeds
- Grease-free operation possible (depending on the application. For further information, please contact our Application Engineering department)
- High versatility
- Long strokes
- Versions with long or multiple sliders available in one linear axis

Preferred areas of application:

- Handling and automation
- Multi-axis gantries
- Packaging machines
- Cutting machines
- Displaceable panels
- Painting installations
- Welding robots
- Special machines

Technical data:

- Available sizes [mm]:Type ED: 75
- Length and stroke tolerances:

 For strokes <1 m: +0 mm to +10 mm (+0 in to 0.4 in)

 For strokes >1 m: +0 mm to +15 mm (+0 in to 0.59 in)

The components

Extruded profile

The anodized 6060 aluminum alloy extrusion used for the profile of the Rollon Uniline ED series linear units were designed and manufactured by industry experts to optimize weight while maintaining mechanical strength. (see physical-chemical characteristics below). The dimensional tolerances comply with EN 755-9 standard.

be achieved. Optimization of the maximum belt width/body dimension ratio enables the following performance characteristics to be achieved:

- High speed
- Low noise
- Low wear

Driving belt

The Rollon Uniline ED series linear units use steel reinforced polyurethane drive belts with RPP pitch and parabolic profiles. This belt is ideal due to its high load transmission characteristics, compact size and low noise. Used in conjunction with a backlash-free pulley, smooth alternating motion can

Carriage

The carriage of the Rollon Uniline ED series linear units are made entirely of anodized aluminum. Each carriage has mounting T-slots for the connection to the moving element. Rollon offers multiple carriages to accommodate a vast array of applications.

General data about aluminum used: AL 6060

Chemical composition [%]

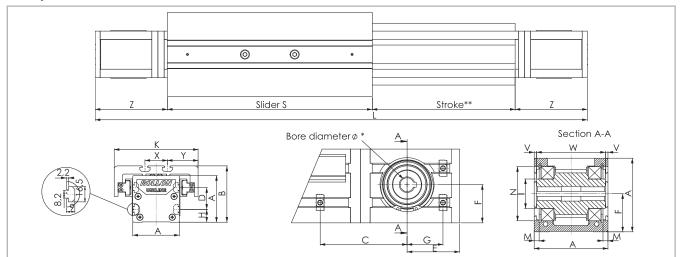
Al	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remaining	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15

Tab. 76

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg — dm³	kN —— mm²	10 ⁻⁶ K	 	J 	Ω . m . 10^{-9}	°C
2.7	69	23	200	880-900	33	600-655

Tab. 77


Mechanical characteristics

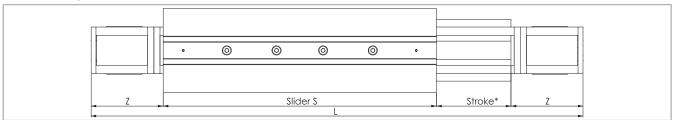
Rm	Rp (02)	А	НВ
N — mm²	N —— mm²	%	_
205	165	10	60-80

Tab. 78

ED75

ED75 system

* For information on the motor connection bores, see ordering key. ** The length of the safety stroke is provided on request according to the customer's specific requirements.


Fig. 60

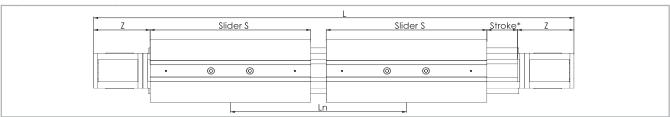
Туре	A [mm]	B [mm]	C* [mm]	D [mm]	E [mm]	F [mm]	G* [mm]	H [mm]	l [mm]	K [mm]	M [mm]	N [mm]	S [mm]	X [mm]	Y [mm]	V [mm]	W [mm]	Z [mm]	Stroke** [mm]
ED75	75	90	71.5	35	53.5	38.8	34.5	20	Ø 29.5	135	4.85	Ø 55	330	36	49.5	2.3	70.4	116	2900

^{*} For the position of the T-nuts when using our motor adapter plates, see pg. US-45ff

Tab. 79

ED75L with long slider

 $^{^{\}star}$ The length of the safety stroke is provided on request according to the customer's specific requirements.


Fig. 61

Туре	S _{min} *	S _{max}	Sn	Z	Stroke**
	[mm]	[mm]	[mm]	[mm]	[mm]
ED75L	440	700	$Sn = S_{min} + n \cdot 10$	116	2500

 $^{^{\}star}\,$ The length of 440 mm is considered standard, all other lengths are considered special dimensions

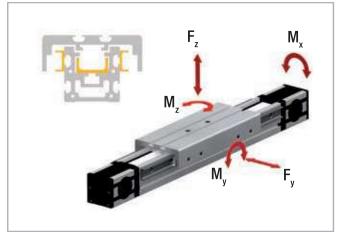
Tab. 80

ED75D with double slider

* The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 62

Туре	S	L _{min}	L**	Ln	Z	Stroke*
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
ED75D	330	416	2864	$Ln = L_{min} + n \cdot 8$	116	2450


 $^{^{\}star}$ Maximum stroke for a single-piece guiding rail and a minimum slider plate distance L_{\min}

^{**} Maximum stroke for a single-piece guiding rail. For longer strokes, see tab. 84

^{**} Maximum stroke for a single-piece guiding rail and a maximum slider plate length S_{max} For longer strokes, see tab. 84

^{**} Maximum distance \(\begin{align*}{l}\text{-max}\) between the centres of slider plates at a stroke of 0 mm For longer strokes, see tab. 84

Type ED

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
ED75	30RPP8	30	0.185

Tab. 82

Belt length (mm) = $2 \times L - 258$ Standard slider Belt length (mm) = $2 \times L - S_n + 72$ Long slider Belt length (mm) = $2 \times L - L_n - 258$ Double slider

Fig. 63

Туре	C [N]	F [Ň]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
ED75	9815	5500	8700	400.2	868	209
ED75-L	19630	11000	8700	400.2	1174 to 2305	852 to 2282
ED75-D	19630	11000	17400	800.4	3619 to 24917	2288 to 15752

For the calculation of the allowed moments, please see pages SL-5ff

Tab. 83

Technical data	Туре
	ED75
Standard belt tension [N]	1000
Moment at no load [Nm]	1.5
Max. traversing speed [m/s]	5
Max. acceleration [m/s²]	15
Repeat accuracy [mm]	0.1
Compact Rail guiding rail	ULV43 / ULV28
Slider type	CS43 spec. / CS28 spec.
Moment of inertia ly [cm ⁴]	127
Moment of inertia Iz [cm ⁴]	172
Pitch diameter of pulley [m]	0.05093
Moment of inertia of each pulley [gmm²]	139969
Stroke per shaft revolution [mm]	160
Mass of slider [g]	3770
Weight with zero stroke [g]	9850
Weight with 1 m stroke [g]	14400
Max. stroke [mm]	7500
Working temperature	from -20 °C to + 80 °C

Tab. 84

Lubrication

The raceways of the guide rails in the Uniline linear axes are prelubricated. To achieve the calculated service life, a lubrication film must always be present between the raceway and the roller. The lubrication film also provides anticorrosion protection to the ground raceways. An approximate value for the lubrication period is every 100 km or every six months. The recommended lubricant is a lithium-based roller bearing grease of medium consistency.

Lubrication of the raceways

Proper lubrication under normal conditions:

- reduces friction
- reduces wear
- reduces stress on the contact faces
- reduces running noise

Lubricants	Thickeners	Temperature range [°C]	Dynamic viscosity [mPas]	
Roller bearing grease	Lithium soap	-30 to +170	<4500	

Tab. 85

Relubrication of the guide rails

- 1. Slide the slider plate to one end of the unit.
- At about half the stroke press and manually move the belt in order to see one of the two rails inside the unit (see Fig. 64).
 It may be necessary to release or loosen the belt tension. See chapter Belt tension (pg. US-59).
- 3. By using a grease syringe (not supplied by ROLLON) or an alternative tool (i.e. brush), apply a sufficient quantity of grease on the raceways.
- 4. If required, re-establish the recommended belt tension (see pg. US-59).
- 5. Finally slide the slider plate back and forth over the entire stroke, in order to distribute the grease over the entire length of the rail.

Fig. 64

Cleaning the guide rails

It is always recommended to clean the slider rail prior to any relubrication, in order to remove grease residues. This can be done while performing maintenance work or during a scheduled machine stop.

- 1. Unscrew the safety screws C (on top of the slider plate) from the belt tensioning device A (see fig. 65).
- 2. Also completely unscrew the belt tensioning screws B and remove the belt tensioning devices A from their housings.
- 3. Lift the toothed belt until the guide rails can be seen.

 Important: Ensure that the side seal is not damaged.
- 4. Clean the rail raceways with a clean and dry cloth. Ensure that all grease and dirt residues from previous work processes are removed. To ensure that the rails are cleaned over their entire length, the slider plate should be moved once over its entire length.
- 5. Apply a sufficient amount of grease to the raceways.

- 6. Re-insert the belt tensioning devices A into their housings and mount the belt tensioning screws B. Re-adjust the belt tension (see pg. US-59).
- 7. Fasten the safety screws C.

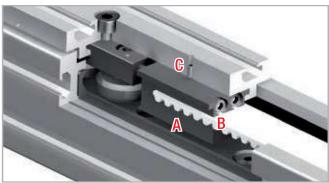


Fig. 65

Accessories

Adapter plates

Standard motor adapter plates AC2

Mounting plates for the most common motors or gearboxes. The connection bores for the motors or gearboxes must be made on site. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting on the linear units.

* Area of plate needs to be cut if used for ED75 linear unit. (Adding 20 mm to total length of unit will render this modification unnecessary). Othewise it gets in contact with the outer rail. X = 20 mm; Y = 35 mm

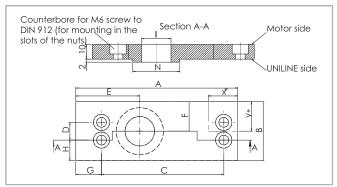
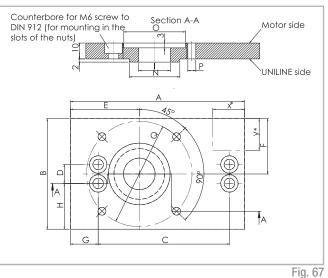


Fig. 66

Size	A	B	C	D	E	F	G	H	l	N
	[mm]									
75	135	70	106	35	53.5	35	19	17.5	Ø 35	Ø 55

Tab. 86

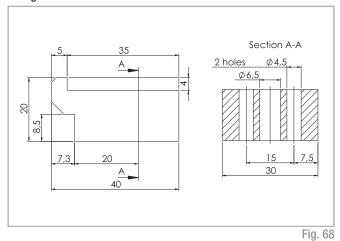

NEMA plates AC1-P

Mounting plates for NEMA motors or gearboxes. These plates are delivered ready-to-mount on the linear axes. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting on the linear units.

Size	NEMA Motors / Gearboxes
75	NEMA 42

Tab. 87

^{*} Area of plate needs to be cut if used for ED75 linear unit. (Adding 20 mm to total length of unit will render this modification unnecessary). Othewise it gets in contact with the outer rail. X = 20 mm; Y = 60 mm

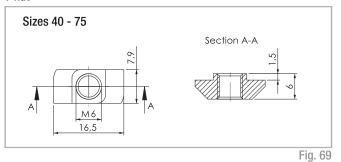

Size	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	F [mm]	G [mm]	H [mm]	l [mm]	N [mm]	0 [mm]	P [mm]	Q [mm]
75	135	120	106	35	53.5	60	19	42.5	35	Ø 55	Ø 57	Ø 7.1	Ø 125.7

Tab. 88

Synchronous use of linear axes in pairs

If two axes are to be used in parallel using a connecting shaft, please specify when ordering, to ensure that the key slots of the pulleys are synchronized.

Fixing brackets APF-2

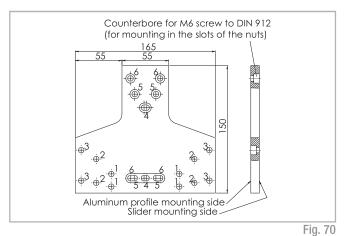


Fixing clamp for simple mounting of a linear axis on a mounting surface or for connecting two units with or without a connection plate (see pg. US-63).

A spacer* may be necessary.

*(Any spacer that may be necessary must be manufactured on site)

T-nut



The maximum tightening torque is 10 Nm.

Assembly kits

T-connection plate APC-1

T-connection plate allows two units to be mounted perpendicular to each other (see pg. US-60). The plate will not interfere with the strokes of either unit. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting on the linear units.

Note

In case of use of APC-1 plates with E and ED series, please consult Rollon Technical Dpt. In standard there is an interference between U-rail and APC-1 plate. A special version with shorter U-rail at both extremities will be offered.

Size	Fixing holes for the slider	Fixing holes for the profile
75	Holes 3	Holes 6

Tab. 89

Angle connection plate APC-2

allows the right angle mounting of two units. The trolley of one unit can be mounted to the side of the other (see pg. US-61). The plate will not interfere with the strokes of either unit. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting to the linear units.

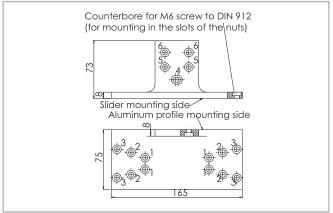


Fig. 71

Note

This adapter plate can be used with types E and ED only to a limited extent. For further information, please contact our Application Engineering Department.

Size	Fixing holes for the slider	Fixing holes for the profile
75	Holes 3	Holes 6

Tab. 90

X connection plate APC-3

X connection plate for mounting two sliders perpendicular to each other (see pg. US-62). The plate will not interfere with the strokes of either unit. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting on the linear units.

Size	Fixing holes for slider 1	Fixing holes for slider 2
75	Holes 3	Holes 6

Tab. 91

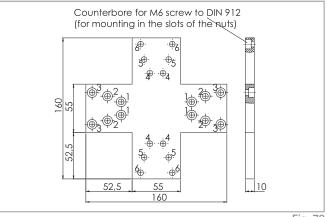
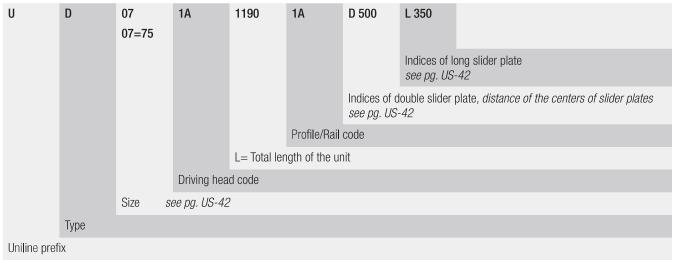



Fig. 72

Ordering key / ~

Identification code for Uniline linear unit



Ordering example: UD 07 1A 1190 1A D 500 L 350

In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com

Left / right orientation

Accessories

Standard motor adapter plate

D	07	AC2
	07=75	Standard motor adapter plates see pg. US-45
	Size s	ee pg. US-45
Туре		

Ordering example: D07-AC2

NEMA motor adapter plates

D	07	AC1
	07=75	NEMA motor adapter plates see pg. US-45
	Size se	ee pg. US-45
Type		

Ordering example: D07-AC1

T-connection plateOrder code: APC-1, s. pg. US-46Angle connection plateOrder code: APC-2, s. pg. US-47X connection plateOrder code: APC-3, s. pg. US-47Fixing clampOrder code: APF-2, s. pg. US-46

Motor connection bores

	Size			
Hole [Ø]	75	Head code		
	14G8 / 5js9	1A		
Metric [mm]	16G8 / 5js9	2A		
with slot for key	19G8 / 6js9	3A		
		4A		
Metric [mm]	18	1B		
for compression coupling	24	2B		
	5/8 / 3/16	1P		
Inch [in] with slot for key		2P		
·		3P		

Tab. 92

The highlighted connection bores are standard connections

Metric: key seat for keys to DIN 6885 form A Inch: key seat for keys to BS 46 Part 1: 1958